Comparison of Two Activity Analyses for Automatic Differentiation:
Context-Sensitive Flow-I nsensitive vs. Context-1 nsensitive Flow-Sensitive

Jaewook Shin and Paul D. Hovland
Mathematics and Computer Science Division
Argonne National Laboratory
9700 S. Cass Ave. Argonne, IL 60439
{j aewook, hovl and}@rcs. anl . gov

Abstract

Automatic differentiation (AD) is a family of techniquegtmn-
erate derivative code from a mathematical model expressed i
programming language. AD computes partial derivativessfach
operation in the input code and combines them to producedhe d
sired derivative by applying the chain rule. Activity argdyis a
compiler analysis used to find active variables in automdiier-
entiation. By lifting the burden of computing partial deatives
for passive variables, activity analysis can reduce the orgrre-
quirement and run time of the generated derivative code.s Thi
paper compares a hew context-sensitive flow-insensiti&-(C
activity analysis with an existing context-insensitivevfleensitive
(CIFS) activity analysis in terms of execution time and thality
of the analysis results. Our experiments with eight bencksa

show that the new CSFI activity analysis runs up to 583 times

faster and overestimates up to 18.5 times fewer active blasa
than does the existing CIFS activity analysis.

Categoriesand Subject Descriptors

D.3.4 [Programming Languages]: Processors - Compilers;
G.1.4 Numerical Analysis]: Quadrature and Numerical Differ-
entiation - Automatic Differentiation

Keywords

automatic differentiation, activity analysis

1. Introduction

Automatic differentiation (AD) automatically performsetiif-
ferentiation of a given mathematical model expressed inca pr

(©2007 Association for Computing Machinery. ACM acknowlesigeat
this contribution was authored or coauthored by a contramtaffiliate of
the U.S. Government. As such, the Government retains a ohrsie,
royalty-free right to publish or reproduce this article,torallow others to
do so, for Government purposes only.

SAC’'07March 11-15, 2007, Seoul, Korea

Copyright 2007 ACM 1-59593-480-4 /07/00035.00.

gramming language. Since it retains the accuracy of theénatig
model and is easy to apply, AD has been widely used in scientifi
and engineering applications for the past decade [8, 4]. ekor
ample, AD can be used in physics modeling to study sensitivit
of the model’s behavior with respect to one of the input \@dsa.
Another class of applications of AD is design optimization &n
engineering object such as aircraft.

subroutine head(x,y)
double ...,dimension(2)::x
double ...,dimension(1)::y

subroutine head(x,y)
type(active):: x(1:2)
type(active):: y(1:1)

c$openad INDEPENDENT(x) y(1)%vV = x(1)%V * x(2)%v
y(1)=x(1)*x(2) y(1)%d = x(1)%d * x(2)%v
c$openad DEPENDENT(y) y(1)%d += x(2)%d * x(1)%v

end subroutine end subroutine

(a) Input (b) Output
Figure 1. An example of automatic differenti-
ation.

From AD’s viewpoint, an input program is a sequence of dif-
ferentiable operations with a set of input and output vdesblin
order to compute the derivative of an output variable wigpezt
to an input variable, AD computes a partial derivative foctea
operation and applies th#hain ruleof calculus to combine them
into a final derivative. Computing derivatives for all outmari-
ables with respect to all input variables requires pargaivatives
to be computed for all intermediate variables with respecilt
input variables, thus requiring as much memory space and com
pute cycles. Figure 1(a) shows a simple Fortran code example
to illustrate how automatic differentiation works. In trégam-
ple, we declarex asindependentaindy asdependenusing com-
piler directives. In the output shown in (b), note that thpety
of x andy are modified taact i ve type, which is a structure of
two variablesv to represent the original value addo represent
the derivative. The first statement computes the originattion
as in (a), and the other two statements compute the gradignt o
grad(y) = %le) x dz(l) + d;l% x dz(2).

Often, however, scientists are interested in the derigatof a
subset of the output variables with respect to a subset oiiithe
put variables. We call such input variables of inteiedependent
variablesand the output variables of interefgpendent variables
Users provide the independent and dependent variablemiatgn
to AD tools by specifying them, for example, as compiler dire

tives. We say a variable ia@riedif it (transitively) depends on any
independent variable angsefulif any dependent variable (transi-
tively) depends on it. A variable iactiveif it is both varied and
useful at a program point. When the number of the specified in-
dependent variables is less than the input variables oruhear

of the specified dependent variables is less than the ougpist v
ables, some intermediate variables may be eithervaded by
any independent variable or nosefulin computing any depen-
dent variable. Such variables are said topassive or inactive
Partial derivatives for passive variables need not be coaaple-
cause, even though they are computed, the values will be nero
will not contribute to the desired derivatives. By not coripg
partial derivatives for such intermediate variables, bthmem-
ory requirement and the run time of the generated progranbean
reduced. Activity analysisfinds active intermediate variables for
which partial derivatives need to be computed. Activity lgsia

is flow-sensitivéf it takes into account the order of statements and
the control flow structure of procedures, awhtext-sensitivé it

is an interprocedural analysis that considers only relalézaall-

return paths.
Activity analysis has been known for some time [5], and sev-

eral implementations are used in AD tools. Until recentlg,vave
been using an implementation of an activity analysis atborj
which is based on an iterative dataflow analysis framewoirkceS
the implementation uses an interprocedural control floplg((CFG),
we call this implementatiofCFGAA The dataflow analysis frame-
work is simple and clean, but for activity analysis it doetstale
well when the input size is large. Also, the context-insevesina-
ture of the algorithm undermines the quality of the outpubtagr-
estimating active variables. In Section 2, we elaboratehese

aspects of ICFGAA.
We have therefore developed a new activity analysis algorit

calledvariable dependence graptetivity analysis (VDGAA). The
key idea of VDGAA is intuitive. First, we generate a variadie
pendence graph [12] to represent data flow between variahies
edge is generated from node A to node B if there is a value flow
from variable A to B. Next, the nodes are colored in two sweeps
forward, starting from the independent variable nodesewtolor-

ing the visited nodes with one color, and backward, starftiog

the dependent variable nodes using another color. All bkt
that are colored by both colors are selected as active. Toosup
context sensitivity, we maintain a call stack while naviggtthe
graph (Section 3). We have implemented the new activityyaisl
algorithm and used it on a set of eight benchmarks, inclutiieg
large MIT General Circulation Model (GCM) [1]. From our expe
iments, we observe that VDGAA runs up to 583 times faster and
improves the quality of the output by up to 18.5 times over-ICF
GAA. In other words, VDGAA overestimates significantly fawe
active variables, thereby reducing the memory requireraedthe

run time of the derivative code.
Our contributions in this paper are as follows:

e A new CSFI activity analysis algorithm.

e Comparison of the new CSFI activity analysis with the ex-
isting CIFS activity analysis in terms of run time and output
quality.

e Implementation and experimental evaluation of the new al-
gorithm on eight benchmarks.

The remainder of this paper is organized as follows. In the ne
section, we describe the existing CIFS activity analysid ase

examples to motivate our research. In Section 3, the new CSFI
activity analysis algorithm is described. In Section 4, wesgnt

our implementation and experimental results. In Sectiow®,
discuss related research. We conclude in Section 6.

2. Background

In this section, we motivate our research by explaining Huav t
existing CIFS activity analysis (ICFGAA) works. We thendaiss
how its run time can be increased and how it can overestimate
active variables.

IN varied = {g}

’ node 3: e =f + g ‘

L

Figure 2. When implemented in iterative data-
flow analysis framework, activity analysis can

iterate more than what is limited by the depth
of the control flow graph.

Table 1. OUT sets of the nodes in Figure 2 in
iterative varied analysis

[Tterations] Node1 [Node2 [Node3 |
1 {9} {a fe.g
2 {e. g iceg |{ceg
3 {a,c,e,¢ | {a,c,e,¢ | {a,c,e, ¢

ICFGAA starts by building an interprocedural control flovagh,
which is generated by connecting the control flow graphs ef th
procedures in a given program. For each call site in proee8ur
to procedure B, the basic block BB containing the call istspto
two, BB1 and BB2. BB1 is from the beginning of BB up to the
call statement, and BB2 is from the statement right belowctike
to the end of BB. A call edge from BB1 to the entry node of pro-
cedure B and a return edge from the exit node of procedure B to
BB2 are inserted. Once the ICFG is complete, the two itezativ
dataflow analyses follow. Firstysefulvariables are propagated
backward along the ICFG edges starting from the exit nodbeof t
program. Nextyaried variables are obtained by propagating for-

ward starting from the entry node of the program.
A program analysis iseparableif the solution values are not

coupled with each other [16, 10]. For example, reaching defin
tion analysis and live variable analysis are separableusecdor
reaching definition analysis, the reachability of one d&éiniat
a certain program point does not affect the reachabilitytbéo
definitions at the same program point. Several program aealy
are not separable, however, such as reaching constant ars-po
to analysis. So is activity analysis. The number of iteraim
separable dataflow analyses is bounded bydigethof the con-
trol flow graph [2]. In the case of activity analysis, howevbie

INvaried = {g}

node 3: e =f +g

ﬁ

ﬁ

‘ node 4: | = m+ ‘

‘ node 7: r = s +p ‘

]

]

‘ node 5: j =k + h ‘

[wes pavn]

]

]

‘ node 6: h =i +a ‘

‘ node 9: n =o + | ‘

N
NCALL
X

/
/CALL
/

Z

Figure 3. Concatenated, short backward de-
pendence chains.

upper bound can be much higher than just the depth of the pro- @
gram’s control flow graph. Figure 2 is an example code snippet
to show this point. Since the depth of the graph in the example
is 1, the upper bound on the number of iterations is 3 (depth +
2) if the analysis is separable: once to propagate the irgthom

down, once to propagate the lower block information alorg th shows how OUT sets of the nodes change over iterations in the

back edge a_1nd, once to chec_k that_ there are no further (?hangesvaried analysis. Along call and return edges, parameter binding
If we are doing avaried analysis, which propagates the variables

varied by the independent variables, and if the IN set of ribde information is used to replace an actual parameter with tne c

. - . ! . .. responding formal parameter and vice versa. Table 2(b) show
is {g}, the analysis needs to iterate four times (Table 1), which is h fth d h d indkefulanalysi |
higher than the upper bounds on separable analysis castss In owIN sc_ets ° the nodes are change |_nm eluranalysis. Vg ue
example, we deliberately arranged the statements so txat i propagatlon in thejsgfulanaly5|s is similar to that of thearied

a depenaence chain in the reverse textual order: node 23— analysis excgpt thgt It propagates backward along theg y :
1. Although we have shown the smallest example, the number oante that variablg is no_t useful anymore gbove_ the aSS|gnm_er_1t in
iterations can be arbitrarily large as the length of the back de- procedurdf 0o. According to ICFGAAX is active because it is

e . . both varied and useful in the IN set of node 6, anid active be-
pendence chain increases. In our experiments with the MIMGC cause of the IN set of node 11. Furthermnda are active because
code, the varied analysis of ICFGAA iterated 31 times. While ;)andg

is hard to imagine any backward dependence chain as long, as 300f the IN sets of node 14 and node 9, respectively. In the code,
g y p 9 however, there is no value flow from the independent variatite

short backward dependence chains can be concatenatedrvia fo the dependent variabje Hence, no variables are active
ward dependencies. In Figure 3, the three backward depeaden ' '
chains of length 3 are concatenated and have the same effect a
one backward dependence chain of length 7.

Figure 5. The ICFG of the code in Figure 4.

Table 2. Iterative dataflow analysis values for
subroutine head(x,y,a,b) the nodes of Figure 5
double precision :: x,y,a,b

c$openad INDEPENDENT(x)

[Order| Node [Tter1 [Tter2 |

call foo(x, b) subroutine foo(f,q) 1 6 Ix¥ Ix}
call foo(a, y) double precision :: f,g 2 7 {x} {x,b}
c$openad DEPENDENT(y) g=f» 3 10 {x} {x’b}
end subroutine end subroutine 4 8 {f} {f}’,
Figure 4. An example to show how ICFGAA ‘Z é4 g}é} g}é}
overestimates active variables. 7 11 {>€,a,y} {>€,a,y,b}

(a) Variedanalysis (OUT sets)
[Order[Node| Tter1 JTter2 |

1 |11 v Ty}

ICFGAA is context insensitive in that dataflow analysis esu
can flow along unrealizable control paths. In other wordfjes > 10 iy} {y.al
can flow into a procedure along the call edge of one call sitk an 3 7 v {y:a}
flow out of the procedure along the return edge of anothesttall 4 9 {g} {g}
5
6
7

Figure 4 is a small example to illustrate this point. In swibire 14 {f} {f}
head, x is declared as an independent variable wra$ a depen- 8 {f} {f}
dent variable by using compiler directives. The ICFG of thige 6 Xy} | {xy.a
is shown in Figure 5. For each calltmo, two nodes are created, (b) Usefulanalysis (IN sets)
one call node representing the call statement before cdlbae
return node for the call statement after the call. Node 6 aark7
the call and return nodes for the first call statement, arehlike number of times when the order of the statements in a depeaden
node 10 and 11 are for the second call. For proceflo three chain is opposite to the propagation direction of the anglysso,
nodes are generated. Node 8 and 9 represent the entry and exive have shown how ICFGAA overestimates active variables be-
node of the procedure, and node 14 is for the statement within cause of context insensitivity. Based on this observation de-

All other irrelevant nodes are abbreviated for simplicifgble 2(a) veloped a new activity analysis algorithm that is contexisgiéve

In this section, we have shown that ICFGAA can iterate a large

but does not use an iterative dataflow framework.

3. Algorithm

In this section, we describe the new activity analysis atbor
VDGAA. The algorithm consists of three major steps, as fetio

1. Build a variable dependence graph (VDG).

Thevaried analysis shown in Figure 7 propagates from the in-
dependent variable nodes forward along the VDG edges. To sup
port context sensitivity, we use a call stack. When a CALLe=dg
is followed, we push the call site label of the edge onto thelst
and we pop the stack top when the corresponding RETURN edge
is followed or the propagation retreats back along the CAdgee
Before a RETURN edge is followed, we compare the current top
of the stack with the edge label. The edge is followed onlyrwhe

2. Propagate forward from the independent variable nodes inthey match. One exception is when the top of the stack keeps a

the VDG to findvariedvariable nodes.

special value called VTG (for Value Through Globals), in @i
case we allow any RETURN edges to be followed. Even when the

3. Propagate backward from the dependent variable nodes instack top is VTG, however, CALL edges can be followed, main-

the VDG to findusefulvariable nodes.

Build-VDG(program PROG)
VDG « new Graph
DepMatrix <+ new Matrix
for each procedure R= CallGraph(PROG) in postorder
for each statement Stm¢ P
for each (Src,Dst) pairc Stmt
VDG.addEdge(Sre~ Dst, FLOW, P)
DepMatrix[P][Src][Dst] = true
if (Stmt has procedure calls)
for each (Actual,Formal) pair of a Cak Stmt
VDG.addEdge(Actuat- Formal, CALL, P)
if (Formal is a reference parameter)
VDG.addEdge(Formal> Actual, RETURN, P)
Label the two edges with the address of Call

DepMatrix[P]«+ TransitiveClosure(DepMatrix[P])
for each formal parameter pair (F1,F2) of P
if (DepMatrix[P][F1][F2])
VDG.addEdge(Ft- F2, PARAM, P)
for each call to P from P’
DepMatrix[P’][Actual(F1)][Actual(F2)] = true

Figure 6. Algorithm: Build variable depen-
dence graph.

A variable dependence graph (VDG) is a tuple (V, E), where
a node Ne V represents a variable in a program uniquely and
an edge (nl, n2E E represents a data dependency from node
nl to n2 [12]. Since the multiple definitions of a variable ate
mapped to a node, the information for flow sensitivity is lebien
the graph is built. Figure 6 shows an algorithm to build VDG.

For each statement in a given program, we generate a FLOW edge

from each source variable to the destination variable. lates

ment contains procedure calls, we also add a CALL edge from

each actual parameter to the corresponding formal paramede

a RETURN edge from the formal parameter to the actual parame-

ter if it is a reference parameter. These edges represard flalv
between pairs of variable nodes. In addition to FLOW, CALihda
RETURN, there is one more edge type, PARAM, which summa-

taining the stack normally. Note that we still follow the lizable
value flow paths even when VTG is used.

Theusefulanalysis is similar to the varied analysis. However, it
traverses the VDG backward starting from the dependentliviari
nodes. Another difference is that we do not visit a node snites
is already marked agaried Finally, when a node is marked as
useful, we mark the variabkctiveas well.

Node::Mark_Varied_Node(stack CALLS, procedure CurrProc)
Mark thisasvaried
for each successor node N and the edge E
if (N.onPathv E.visited)continue
N.onPath— true
switch (E.kind)
case CALL:
CALLS.push(E.label);E.visited- true
N.markVaried(CALLS,E.sinkProc)
CALLS.pop()preak
case RETURN: // VTG: Value Through Globals
if (CALLS.top() == E.labelv CALLS.top == VTG)
if (CALLS.top !'=VTG) CALLS.pop()
E.visited« true
N.markVaried(CALLS,E.sinkProc)
if (CALLS.top I=VTG) CALLS.push(E.label)
break
default :
if (E.kind '= PARAM) E.visited— true
if (CurrProc != E.proc)
CALLS.push(VTG)
N.markVaried(CALLS,E.proc)
CALLS.pop()
ese

N.markVaried(CALLS,E.proc)
N.onPath— false

Figure 7. Algorithm: Mark varied nodes.

Figure 8 is the VDG generated for the code in Figure 4. We
use this VDG to show how VDGAA works. All variables in the
input code are mapped to their own nodes in the graph. A FLOW
edge from F to G is generated because of the statement in-proce
duref 0o, and a PARAM edge between the same pair of nodes is

rizes data flow among formal parameters. We add a PARAM edgegenerated as a result of the transitive closure operatidirotider

from formal parameter f1 to f2 whenever there is a path from f1
to f2. The PARAM edges are added to allow multiple traversals
along the same edge when there are multiple call sites fooa pr

edges are CALL and RETURN edges that map between actual and
formal parameters. In addition to edge types, CALL and RENUR
edges also have edge labels, which are call site addregsegsd

cedure. To insert these PARAM edges, we set an element of theanalysis starts propagating from the independent varizude for

procedure’s dependence matrix to true whenever a FLOW exdge i
created. After building the VDG of a procedure, we apply War-
shall'stransitive closurealgorithm to add PARAM edges for pairs

X. Whenvaried analysis finishes, all nodes in path-X F — G
— B are marked as varied. Nowsefulanalysis starts from the
dependent variable nodé At this time, it immediately returns

of formal parameter nodes whenever there is a path from one tofrom the algorithm because nodeis not marked as varied. No

the other.

variables are marked as active.

CALL\RETURN

Figure 8. Variable dependence graph of Fig-
ure 4.

4. Experiment

The VDGAA algorithm described in Section 3 is implemented
in the OpenAnalysis environment. By defining intermediae-r
resentation (IR) interfaces for multiple compiler infrastures,
OpenAnalysis aims to make a single implementation of coenpil
analyses in IR independent fashion [18]. Although Opengnal
sis is used by multiple compiler infrastructures for muéitan-
guages, for this experiment our implementation is linked &n
automatic differentiation tool called OpenAD/F [19] in ¢onc-
tion with the Open64/SL compiler infrastructure [15]. Fig®
shows a block diagram of the experimental flow implemented as
part of OpenAD/F, which is a source-to-source translatoFfur-

tran. The machine we used has a 1.86 GHz Pentium M processor

with 2 MB L2 cache and 1 GB DRAM memory.

I nput
(Fortran)

|

Open64
Fortran 90
Front end

Qut put
(Fortran)

T

pen64
Fortran 90
Unpar ser

QpenAnal ysi s

AD
Transformation

Figure 9. OpenAD automatic differentiation
tool.

Table 3 shows the applications used in our experimevit3-
gcmis a numerical model of the atmosphere, ocean, and climpte [1

600

n w N a
o =] o =]
=] =] =] =]

Speedup of VDGAA over ICFGAA

=
o
=]

4

4
swirl

3i2
MITgem CG

LU newton adiabatic Msa

Benchmarks

c2

Figure 10. Speedups in analysis run time:
VDGAA over ICFGAA.

Figure 10 shows the speedups of the new analysis over ICF-
GAA. The speedups range from 583 times for MITgcm to 2 times
for C2. Notice the correlation between the speedups andathe c
sizes of Table 3. The speedup increases as the program size. gr
Newtornwas an exception because, compared to its large code size,
only the small Rosenbrock function was differentiated.

20

15

Active vars ICFGAA / # active vars VDGAA

| ¢

MITgem LU CG

) |
newton adiabatic msa
Benchmarks

i

swirl

083
i

Figure 11. Reduction in number of active vari-
ables.

Our next interest is the quality of the produced outputs. [é/hi
we can conservatively assume that all variables are aatidestil

While the code size is several hundred thousand lines, we usethe generated codes will produce the correct numericalltsesu

a stripped versionLU and CG are obtained from NAS parallel
benchmarks [20]. Since the analyses do not understandense
tics of MPI calls, we augmentdd) andCG with global variables
and forced all communicated variables to be active by diegjar
them both independent and depend&gwtonimplements New-
ton’s method and Rosenbrock function. Témiabaticsubroutine
models adiabatic flow, a commonly used module in chemical en-
gineering. Msa and swirl are from the MINPACK-2 test collec-
tion [3] and compute the minimal surface area and the swjirlin
flow problem, respectively. C2 implements an ordinary défe
tial equation solver.

computing unnecessary derivatives for passive variatdesmy

is a source of longer execution time but also requires mom-me
ory space possibly thrashing the disks for swapping. Fidudre
shows the reduction in number of active variables. The reduc
tion is computed by dividing the number of active variables-p
duced with ICFGAA by that of VDGAA. Computing the reduc-
tion factor this way is conservative because we do not knav th
exact number of active variables and assume that all found ac
tive variables are overestimations. In reality, howevéarge por-
tion of active variables identified by VDGAA are truly actjend

the reduction factors are expected to be much higher. NHF

Table 3. Benchmarks.

[Benchmarks] Description [Source [#lines |
MITgcm MIT General Circulation Model MIT 13787
LU Lower-upper symmetric Gauss-Seidel NASPB 5951
CG Conjugate gradient NASPB 2480
newton Newton’s method + Rosenbrock function ANL 2189
adiabatic | Adiabatic flow model in chemical engineeringCMU 1009
msa Minimal surface area problem MINPACK-2 | 461
swirl Swirling flow problem MINPACK-2 | 355
c2 Ordinary differential equation solver ANL 64

gcm ICFGAA produced 758 active variables, whereas VDGAA
found only 255 among them. The reduction is not very large for
LU andCG because of the global variable inserted to model MPI
calls. Fornewton ICFGAA overestimated a significant number
of active variables. While the independent and dependent va
ables are declared within a small procedure, for\ihged and
usefulanalysis of ICFGAA, values are propagated along the call
and return edges into the calling function, leading to theres-
timation of active variables in the calling procedure. REdia-
batic, VDGAA found two fewer active variables than did ICF-
GAA, but both analyses found the same set of active varidbtes
msaandswirl. C2 is interesting because VDGAA overestimated
one more active variable than did ICFGAA. The overestinmatio
is caused by flow insensitivity of VDGAA where the statement
order information is lost. For all other benchmarks showithia
graph, the sets of active variables found by VDGAA are the sub
sets of those found by ICFGAA. In other words, only C2 has one
passive variable that is overestimated as active by VDGAA bu
correctly determined as passive by ICFGAA. However, we fbun
some other applications where VDGAA overestimated more ac-
tive variables than did ICFGAA. The most common case is shown
in Figure 12. In (a)a is active because there is a value flow path
from an independent variabieto a dependent variablethrough
a:z — fl - bl —a— bl — gl — y. In(b),ais not active
because there is no such value flow path froro y througha.
The value ofa returned from the first call tboo2 is passed back

to b2 of the second call th 002 but is killed by the first assign-
ment withinf 002. Whereas ICFGAA correctly discovers this,
VDGAA fails because there is no difference between the VDGs
of f ool andf 002. In order to eliminate these overestimations
caused by flow insensitivity of VDGAA, a global reaching défin
tion analysis can be used.

subroutine head(x,y) subroutine head(x,y)
c$openad INDEPENDENT(x) c$openad INDEPENDENT(x)
call fool(x, a, y) call foo2(x, a, y)
call fool(x, a,y) call foo2(x, a, y)
c$openad DEPENDENT(y) c$openad DEPENDENT(y)
end subroutine end subroutine

subroutine fool(f1,b1,g1)
gl=hl
bl1="f1

end subroutine

subroutine foo2(f2,b2,g2)

g2=h2
end subroutine
(a) ’'a’ is active (b) 'a’ is passive
Figure 12. Overestimation of active variables
in VDGAA.

This outstanding output quality of CSFI activity analysighw
respect to that of CIFS activity analysis is beyond our ahitix-
pectation. Several factors can help explain this resulte fiist
is the way programmers use variables. For scientific apjmica
written in Fortran, usually variables are defined once, teetf@ing
used. Second, by the nature of activity analysis, the aisalpdue
for a variable is binary, either active or passive. Hencenavhen
a variable is defined and used multiple times, it is highlelyk
that a correct value still is determined for the variabler &am-
ple, consider a variable defined and used 10 times each. VDGAA
determines the activity of the variable correctly if at fease of
the following conditions is met: (1) at least one def-use [zadn a
value flow path from an independent variable to a dependeiit va
able, (2) no definition of the variable has a value flow patimfro
any independent variable, or (3) no use of the variable l&adsy
dependent variable. VDGAA may overestimate the variabkcas
tive if there is a definition leading from an independent abié
and a use leading to a dependent variable in VDG but the defini-
tion does not reach the use in the program because eithes¢he u
textually precedes the definition or the def and use are inwnl-
ally exclusive control paths. Thus, this comparison relsettveen
CSFI and CIFS activity analyses on scientific applicatiomg-w
ten in Fortran should not be blindly generalized to othelys®s
nor to other applications written in other programming laages.
Lastly, ICFGAA makes some conservative assumptions. For ex
ample, any variable aliased with an active variable is assutn
be also active.

5. Redated Work

Activity analysis has been known for some time [5], but only
recently have algorithms been developed and describechéor t
analysis. Hascoet et al. have described an algorithm basiere
ative dataflow analysis framework [9]. Their data flow eqoradi
are similar to the ones used in ICFGAA. Kreaseck et al. inves-
tigated dynamic activity analysis that make decisionsrdurun
time as to computing derivative values [11]. Strout et aledus
activity analysis as an example to verify their data flow gnal
sis framework extended for MPI [7] programs [17]. Fagan and
Carle described the static and dynamic activity analysis\in
IFOR 3.0 [6]. Similar to VDGAA, their static activity analigs
is context-sensitive flow-insensitive. As in VDGAA, theypip
transitive closure to compute transitive dependencied| gfairs

of variables in a procedure.])
Program slicing is a technique to find all statements andipred

cates of a program that might affect a variabl a program point
P [21]. Forward slicing is similar teariedanalysis, and backward
slicing is similar tousefulanalysis of VDGAA .Program chopping
is a technique to obtain all program elements (statemeniseor

icates) that are used to convey effects from a source elestert
target element [14]. Comparable to PARAM edges in VDGAA,
they computesummary edgeamong actual parameters of proce-
dure calls. Instead of computing transitive closure forladial
variables, they restrict the computation to procedure maters.
Thus, the complexity to compute summary edge®{gn?) as
opposed ta)(n?) for Warshall’s algorithm, wherg is the num-
ber of procedure parameters amés the number of variables used

in the procedure [13].
Program chopping returns program elements such as statemen

and predicates as an output whereas activity analysisneag-
tive variables. It is conceivable to use program choppinfiro
activity of variables by ignoring the predicates in the auatpnd
taking the variables being defined by the statements asacti-
ables. However, the active variables obtained this way may i
clude the variables that depend on independent variableagh
control dependence and the ones on which dependent variddle
pend through control dependence. Consequently the owpuie
more conservative than that of VDGAA. Compared with VDGAA,
program chopping has a wider range of applications. However
VDGAA is simpler and cheaper than program chopping. For ex-
ample, in order to build a system dependence graph for prmogra
chopping, data flow analysis is performed to compute the fset o
reaching definitions. For VDGAA, building a variable depende
graph requires a single scan of the input program. Although w
use anO(n?) algorithm to generate PARAM edges, this is only
for simplicity, and theO(pn?) algorithm of program chopping
can replace Warshall's algorithm in VDGAA. Furthermoree th
number of parameters (representegasf VDGAA can be much
smaller than that of program chopping because, in prograp-ch
ping, global variables are treated as extra parametersiditi@n,

the cost of graph navigation algorithm for VDGAAG P x E +
CSites x Params®) whereas it isO(Params x (P x E +
CSites x Params?)) * for program chopping where? is the
number of procedures in the progra,is the maximum num-
ber of edges for the graph of any procedut&ites is the total
number of call sites in the program, aRdrams is the maximum
number of procedure parameters in any procedure.

6. Conclusion

Activity analysis is essential for automatic differenitat tools
by allowing them to generate efficient derivative codes tiat
faster with less memory. In this paper, we describe a novekxt-
sensitive flow-insensitive activity analysis, called VD&Aand
provide a comparison with an existing context-insensiflogy-
sensitive activity analysis, called ICFGAA. In our expeeints on
eight benchmarks, the speedups of VDGAA over ICFGAA range
from 2 to 583 times. For most benchmarks, VDGAA overesti-
mates the same or fewer active variables than ICFGAA.

Acknowledgments

This work was supported by the Mathematical, Information,
and Computational Sciences Division subprogram of the ©ffic
of Advanced Scientific Computing Research, Office of Science
U.S. Dept. of Energy, under Contract DE-AC02-06CH11357. We
thank Gail Pieper for proofreading several revisions.

!Nontruncated, same-level chopping

References

[1] http://mitgcm.org/.

[2] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullma€ompilers:
Principles, Techniques, and Tooiddison-Wesley, 1986.

Brett M. Averick, Richard G. Garter, and Jorge J. More.
MINPACK-2 Test Problem Collection. Technical Memorandum
ANL/MCS-TM-150, Mathematics and Computer Science Divisio
Argonne National Laboratory, Argonne, IL, May 1991.

Martin Berz, Christian H. Bischof, George F. Corlissdafndreas
Griewank, editorsComputational Differentiation: Techniques,
Applications, and ToolsSIAM, Philadelphia, PA, 1996.

Christian Bischof, Alan Carle, Peyvand Khademi, and fevd
Mauer. ADIFOR 2.0: Automatic differentiation of Fortran 77
programslEEE Computational Science & Engineerjrg(3):18-32,
1996.

Mike Fagan and Alan Carle. Activity Analysis in ADIFOR:
Algorithms and Effectiveness. Technical Report TR04-21,
Department of Computational and Applied Mathematics, Rice
University, Houston, TX, November 2004.

Message Passing Interface Forum. MPI: A message-gassin
interface standardnternational Journal of Supercomputer
Applications 8(3/4):165-414, 1994.

[8] Andreas Griewank and George F. Corliss, editénstomatic
Differentiation of Algorithms: Theory, Implementatiomca
Application SIAM, Philadelphia, PA, 1991.

L. Hascoét, U. Naumann, and V. Pascual. “To be recordedilysis
in reverse-mode automatic differentiatidfuture Generation
Computer System&1(8), 2004.

Uday P. Khedker and Dhananjay M. Dhamdhere. A genedliz
theory of bit vector data flow analysi8CM Transactions on
Programming Languages and Systet®(5):1472-1511, 1994.
Barbara Kreaseck, Luis Ramos, Scott Easterday, Mielgttout,
and Paul Hovland. Hybrid static/dynamic activity analyis
Proceedings of the 3rd International Workshop on Automatic
Differentiation Tools and Applications (ADTA'Q4eading,
England, 2006.

Arun Lakhotia. Rule-based approach to computing medul
cohesion. IrfProceedings of the 15th International Conference on
Software Engineeringpages 35-44, Baltimore, MD, 1993.
Thomas Reps, Susan Horwitz, Mooly Sagiv, and Geneviagay.
Speeding up slicing. IRroceedings of the 2nd ACM SIGSOFT
Symposium on Foundations of Software Engineenreges 11-20,
1994.

Thomas Reps and Genevieve Rosay. Precise interpnatedu
chopping. InProceedings of the 3rd ACM SIGSOFT Symposium on
Foundations of Software Engineeringages 41-52, 1995.

Rice University. Open64 project.
http://www.hipersoft.rice.edu/open64/.

Marc Shapiro and Susan Horwitz. The effects of the gieni of
pointer analysis. Ifnternational Symposium on Static Analysis
pages 16-34, 1997. Lecture Notes in Computer Science, 3062,1
Pascal Van Hentenryck (ed.), Springer-Verlag, New York, NY
Michelle Mills Strout, Barbara Kreaseck, and Paul D.vidmd.
Data-flow analysis for MPI programs. International Conference
on Parallel Processing2006.

Michelle Mills Strout, John Mellor-Crummey, and Paul Bovland.
Representation-independent program analysiBraeeedings of
The Sixth ACM SIGPLAN-SIGSOFT Workshop on Program
Analysis for Software Tools and Engineerii05.

Jean Utke. OpenAD: Algorithm implementation user guid
Technical Memorandum ANL/MCS-TM-274, Mathematics and
Computer Science Division, Argonne National Laboratof§)4
Rob F. van der Wijngaart. NAS parallel benchmarks verd.4.
Technical Report NAS-02-007, NASA Advanced Supercomjgutin
(NAS) Division, October 2002.

Mark Weiser. Program slicing. IRroceedings of the 5th
International Conference on Software Engineeripgges 439-449,
1981.

(3]

(4]

(5]

(6]

(7]

El

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18

—

[19]

[20]

[21]

